Kyle Sander
Kyle Sander earned a B.S. in Chemical Engineering and an M.S. degree in Biological and Ecological Engineering studying life cycle effects of algae production for fuels and co-products. He also investigated rapid sand filtration as an algal dewatering process step and enzymatic degradation of, and simultaneous saccharification and ethanol production from of algal cell biomass. Kyle earned his PhD from the University of Tennessee, Knoxville conducting his thesis research within the BioEnergy Science Center at Oak Ridge National Laboratory. Kyle characterized regulatory genes and related cellular redox in two candidate lignocellulolytic, ethanol-producing biocatalysts; Clostridium thermocellum and Caldicellulosiruptor bescii. Basic redox metabolism was characterized yielding an expanded view of redox metabolism in these organisms and effected bioprocessing improvements through genetically modifying redox-related regulation. A genotype-phenotype relationship was similarly identified between the FapR local fatty acid biosynthesis repressor and tolerance to elevated osmolarity conditions, a highly complex, bioprocess-limiting, and difficult-to-engineer trait in C. bescii. As a member of the CUBES project, Kyle studies unbalanced growth coupling of polyhydroyalkanoate production in species of Cupriavidus, and rhizosphere microbiome interspecies interactions toward improving reliability of probiotic species ingress in diverse community settings.